Oscillatory instability of a three-dimensional lid-driven flow in a cube

نویسنده

  • Yuri Feldman
چکیده

A series of time-dependent three-dimensional 3D computations of a lid-driven flow in a cube with no-slip boundaries is performed to find the critical Reynolds number corresponding to the steady-oscillatory transition. The computations are done in a fully coupled pressure-velocity formulation on 1043, 1523, and 2003 stretched grids. Grid-independence of the results is established. It is found that the oscillatory instability of the flow sets in via a subcritical symmetry-breaking Hopf bifurcation at Recr 1914 with the nondimensional frequency =0.575. Three-dimensional patterns in the steady and oscillatory flow regimes are compared with the previously studied two-dimensional configuration and a three-dimensional model with periodic boundary conditions imposed in the spanwise direction. © 2010 American Institute of Physics. doi:10.1063/1.3487476

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental observation of the steady-oscillatory transition in a cubic lid-driven cavity

Particle image velocimetry is applied to the lid-driven flow in a cube to validate the numerical prediction of steady-oscillatory transition at lower than ever observed Reynolds number. Experimental results agree with the numerical simulation demonstrating large amplitude oscillatory motion overlaying the base quasi-two-dimensional flow in the mid-plane. A good agreement in the values of critic...

متن کامل

Numerical Investigation of Double- Diffusive Mixed Convective Flow in a Lid-Driven Enclosure Filled with Al2O3-Water Nanofluid

Double-diffusive mixed convection in a lid-driven square enclosure filled with Al2O3-water is numerically investigated. Two-dimensional nonlinear governing equations are discretized using the control volume method and hybrid scheme. The equations are solved using SIMPLER algorithm. The results are displayed in the form of streamlines, isotherms, and iso-concentrations when the Richardson number...

متن کامل

Comparison of three different numerical schemes for 2D steady incompressible lid-driven cavity flow

In this study, a numerical solution of 2D steady incompressible lid-driven cavity flow is presented. Three different numerical schemes were employed to make a comparison on the practicality of the methods. An alternating direction implicit scheme for the vorticity-stream function formulation, explicit and implicit schemes for the primitive variable formulation of governing Navier-Stokes equatio...

متن کامل

The effect of flow parameters on mixing degree of a three dimensional rhombus micromixer with obstacles in the middle of the mixing channel using oscillatory inlet velocities

The previous studies of authors on passive micromixers indicated that the micromixers dividing the flow to several layers, such as rhombus micromixers and micromixers with obstacles in the middle of the mixing channel, have higher mixing degree than other types. Also, using of oscillatory inlet velocities is an active method to enhance the mixing efficiency of micromixers. Therefore, in this st...

متن کامل

Simulation of Lid Driven Cavity Flow at Different Aspect Ratios Using Single Relaxation Time Lattice Boltzmann Method

Abstract   Due to restrictions on the choice of relaxation time in single relaxation time (SRT) models, simulation of flows is generally limited base on this method. In this paper, the SRT lattice Boltzmann equation was used to simulate lid driven cavity flow at different Reynolds numbers (100-5000) and three aspect ratios, K=1, 1.5 and 4. The point which is vital in convergence of this scheme ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010